Extensions 1→N→G→Q→1 with N=C2xDic9 and Q=C22

Direct product G=NxQ with N=C2xDic9 and Q=C22
dρLabelID
C23xDic9288C2^3xDic9288,365

Semidirect products G=N:Q with N=C2xDic9 and Q=C22
extensionφ:Q→Out NdρLabelID
(C2xDic9):1C22 = C22:3D36φ: C22/C1C22 ⊆ Out C2xDic972(C2xDic9):1C2^2288,92
(C2xDic9):2C22 = C23:2D18φ: C22/C1C22 ⊆ Out C2xDic972(C2xDic9):2C2^2288,147
(C2xDic9):3C22 = C24:4D9φ: C22/C1C22 ⊆ Out C2xDic972(C2xDic9):3C2^2288,163
(C2xDic9):4C22 = D4:6D18φ: C22/C1C22 ⊆ Out C2xDic9724(C2xDic9):4C2^2288,358
(C2xDic9):5C22 = C22:C4xD9φ: C22/C2C2 ⊆ Out C2xDic972(C2xDic9):5C2^2288,90
(C2xDic9):6C22 = C2xD18:C4φ: C22/C2C2 ⊆ Out C2xDic9144(C2xDic9):6C2^2288,137
(C2xDic9):7C22 = C2xC18.D4φ: C22/C2C2 ⊆ Out C2xDic9144(C2xDic9):7C2^2288,162
(C2xDic9):8C22 = C2xD4xD9φ: C22/C2C2 ⊆ Out C2xDic972(C2xDic9):8C2^2288,356
(C2xDic9):9C22 = C2xD4:2D9φ: C22/C2C2 ⊆ Out C2xDic9144(C2xDic9):9C2^2288,357
(C2xDic9):10C22 = C4oD4xD9φ: C22/C2C2 ⊆ Out C2xDic9724(C2xDic9):10C2^2288,362
(C2xDic9):11C22 = C22xC9:D4φ: C22/C2C2 ⊆ Out C2xDic9144(C2xDic9):11C2^2288,366
(C2xDic9):12C22 = C22xC4xD9φ: trivial image144(C2xDic9):12C2^2288,353

Non-split extensions G=N.Q with N=C2xDic9 and Q=C22
extensionφ:Q→Out NdρLabelID
(C2xDic9).1C22 = C36:2Q8φ: C22/C1C22 ⊆ Out C2xDic9288(C2xDic9).1C2^2288,79
(C2xDic9).2C22 = C36.6Q8φ: C22/C1C22 ⊆ Out C2xDic9288(C2xDic9).2C2^2288,80
(C2xDic9).3C22 = C42:7D9φ: C22/C1C22 ⊆ Out C2xDic9144(C2xDic9).3C2^2288,85
(C2xDic9).4C22 = C42:3D9φ: C22/C1C22 ⊆ Out C2xDic9144(C2xDic9).4C2^2288,86
(C2xDic9).5C22 = C23.9D18φ: C22/C1C22 ⊆ Out C2xDic9144(C2xDic9).5C2^2288,93
(C2xDic9).6C22 = D18:D4φ: C22/C1C22 ⊆ Out C2xDic9144(C2xDic9).6C2^2288,94
(C2xDic9).7C22 = Dic9.D4φ: C22/C1C22 ⊆ Out C2xDic9144(C2xDic9).7C2^2288,95
(C2xDic9).8C22 = C36.3Q8φ: C22/C1C22 ⊆ Out C2xDic9288(C2xDic9).8C2^2288,100
(C2xDic9).9C22 = D18.D4φ: C22/C1C22 ⊆ Out C2xDic9144(C2xDic9).9C2^2288,104
(C2xDic9).10C22 = D18:Q8φ: C22/C1C22 ⊆ Out C2xDic9144(C2xDic9).10C2^2288,106
(C2xDic9).11C22 = D18:2Q8φ: C22/C1C22 ⊆ Out C2xDic9144(C2xDic9).11C2^2288,107
(C2xDic9).12C22 = C36.49D4φ: C22/C1C22 ⊆ Out C2xDic9144(C2xDic9).12C2^2288,134
(C2xDic9).13C22 = C23.28D18φ: C22/C1C22 ⊆ Out C2xDic9144(C2xDic9).13C2^2288,139
(C2xDic9).14C22 = C36:7D4φ: C22/C1C22 ⊆ Out C2xDic9144(C2xDic9).14C2^2288,140
(C2xDic9).15C22 = C23.23D18φ: C22/C1C22 ⊆ Out C2xDic9144(C2xDic9).15C2^2288,145
(C2xDic9).16C22 = C36.17D4φ: C22/C1C22 ⊆ Out C2xDic9144(C2xDic9).16C2^2288,146
(C2xDic9).17C22 = C36:2D4φ: C22/C1C22 ⊆ Out C2xDic9144(C2xDic9).17C2^2288,148
(C2xDic9).18C22 = D18:3Q8φ: C22/C1C22 ⊆ Out C2xDic9144(C2xDic9).18C2^2288,156
(C2xDic9).19C22 = D4.10D18φ: C22/C1C22 ⊆ Out C2xDic91444-(C2xDic9).19C2^2288,364
(C2xDic9).20C22 = C4xDic18φ: C22/C2C2 ⊆ Out C2xDic9288(C2xDic9).20C2^2288,78
(C2xDic9).21C22 = C42:2D9φ: C22/C2C2 ⊆ Out C2xDic9144(C2xDic9).21C2^2288,82
(C2xDic9).22C22 = C4xD36φ: C22/C2C2 ⊆ Out C2xDic9144(C2xDic9).22C2^2288,83
(C2xDic9).23C22 = C23.16D18φ: C22/C2C2 ⊆ Out C2xDic9144(C2xDic9).23C2^2288,87
(C2xDic9).24C22 = C22:2Dic18φ: C22/C2C2 ⊆ Out C2xDic9144(C2xDic9).24C2^2288,88
(C2xDic9).25C22 = C23.8D18φ: C22/C2C2 ⊆ Out C2xDic9144(C2xDic9).25C2^2288,89
(C2xDic9).26C22 = Dic9:4D4φ: C22/C2C2 ⊆ Out C2xDic9144(C2xDic9).26C2^2288,91
(C2xDic9).27C22 = C22.4D36φ: C22/C2C2 ⊆ Out C2xDic9144(C2xDic9).27C2^2288,96
(C2xDic9).28C22 = Dic9:3Q8φ: C22/C2C2 ⊆ Out C2xDic9288(C2xDic9).28C2^2288,97
(C2xDic9).29C22 = C36:Q8φ: C22/C2C2 ⊆ Out C2xDic9288(C2xDic9).29C2^2288,98
(C2xDic9).30C22 = Dic9.Q8φ: C22/C2C2 ⊆ Out C2xDic9288(C2xDic9).30C2^2288,99
(C2xDic9).31C22 = C4:C4xD9φ: C22/C2C2 ⊆ Out C2xDic9144(C2xDic9).31C2^2288,101
(C2xDic9).32C22 = C4:C4:7D9φ: C22/C2C2 ⊆ Out C2xDic9144(C2xDic9).32C2^2288,102
(C2xDic9).33C22 = D36:C4φ: C22/C2C2 ⊆ Out C2xDic9144(C2xDic9).33C2^2288,103
(C2xDic9).34C22 = C4:D36φ: C22/C2C2 ⊆ Out C2xDic9144(C2xDic9).34C2^2288,105
(C2xDic9).35C22 = C4:C4:D9φ: C22/C2C2 ⊆ Out C2xDic9144(C2xDic9).35C2^2288,108
(C2xDic9).36C22 = C2xDic9:C4φ: C22/C2C2 ⊆ Out C2xDic9288(C2xDic9).36C2^2288,133
(C2xDic9).37C22 = C2xC4:Dic9φ: C22/C2C2 ⊆ Out C2xDic9288(C2xDic9).37C2^2288,135
(C2xDic9).38C22 = C23.26D18φ: C22/C2C2 ⊆ Out C2xDic9144(C2xDic9).38C2^2288,136
(C2xDic9).39C22 = C4xC9:D4φ: C22/C2C2 ⊆ Out C2xDic9144(C2xDic9).39C2^2288,138
(C2xDic9).40C22 = Dic9:D4φ: C22/C2C2 ⊆ Out C2xDic9144(C2xDic9).40C2^2288,149
(C2xDic9).41C22 = C36:D4φ: C22/C2C2 ⊆ Out C2xDic9144(C2xDic9).41C2^2288,150
(C2xDic9).42C22 = Dic9:Q8φ: C22/C2C2 ⊆ Out C2xDic9288(C2xDic9).42C2^2288,154
(C2xDic9).43C22 = C36.23D4φ: C22/C2C2 ⊆ Out C2xDic9144(C2xDic9).43C2^2288,157
(C2xDic9).44C22 = C22xDic18φ: C22/C2C2 ⊆ Out C2xDic9288(C2xDic9).44C2^2288,352
(C2xDic9).45C22 = C2xD36:5C2φ: C22/C2C2 ⊆ Out C2xDic9144(C2xDic9).45C2^2288,355
(C2xDic9).46C22 = C2xQ8xD9φ: C22/C2C2 ⊆ Out C2xDic9144(C2xDic9).46C2^2288,359
(C2xDic9).47C22 = C42xD9φ: trivial image144(C2xDic9).47C2^2288,81
(C2xDic9).48C22 = C2xC4xDic9φ: trivial image288(C2xDic9).48C2^2288,132
(C2xDic9).49C22 = D4xDic9φ: trivial image144(C2xDic9).49C2^2288,144
(C2xDic9).50C22 = Q8xDic9φ: trivial image288(C2xDic9).50C2^2288,155
(C2xDic9).51C22 = C2xQ8:3D9φ: trivial image144(C2xDic9).51C2^2288,360

׿
x
:
Z
F
o
wr
Q
<